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Abstract

The reassembly of fragmented images, akin to solving a jigsaw puzzle, presents
a challenging problem in computer vision and machine learning due to its visual,
semantic, and spatial nature. In addition, the number of permutations of a jigsaw
puzzle grows tremendously as the number of pieces grows. In this paper, we take
inspiration from AlphaGo’s variation of a Monte Carlo tree search. We use policy
gradient methods to train our policy network, assigning probabilities to state-action
pairs, and use supervised learning to train our value network, assigning values
to states, both of which are deep convolutional neural networks. In addition, we
leverage the episodic and exploratory nature of reinforcement learning and reframe
the jigsaw puzzle as a sequential swapping game. The aim is to demonstrate the
application of reinforcement learning to an image manipulation task.

1 Introduction

Image manipulation is a broad category of problems studied in computer vision and machine learning,
including image denoising, translation, and transformation. Image manipulation can be used for
solving problems in medicine, perception, and more. Here, we focus on the assembly of jigsaw
puzzles as our image manipulation task. We wish to demonstrate the application of reinforcement
learning to such an image manipulation task.

A jigsaw puzzle is a tiling puzzle that requires the assembly of interlocking and tessellating pieces.
Each piece has a small part of a picture on it, and thus learnable, local features; when complete,
a jigsaw puzzle produces a complete picture with emergent global properties. This problem is
challenging because it requires the model to recognize local and global patterns, understand spatial
relationships, make sense of fragmented information, and act with a tremendous search space. Solving
the jigsaw puzzle problem using machine learning is an area of research that explores techniques for
effectively integrating information from different parts of an input to improve overall understanding
and performance in tasks such as image segmentation, object recognition, or scene understanding.
Earlier reassembly algorithms utilized shape [11], contour, or color [8] of the pieces to match adjacent
pieces. With the rapid advancements in machine learning, numerous approaches have been used for
jigsaw puzzle reassembly such as convolutional neural network (CNN) based methods [6], generative
adversarial network-based methods [4], and reinforcement learning [2].

We generate 3 × 3 jigsaw puzzles from the MNIST dataset. Though MNIST images are 28 × 28,
we form our jigsaw puzzle using nine 9× 9 pieces. The digits in the MNIST dataset are centered,
and so the loss of some edge pixels is irrelevant. CNNs underlie our puzzle-solving architecture. We
are inspired by AlphaGo’s Monte Carlo tree search (MCTS) variant, which utilizes value and policy
networks to reduce the depth and breadth of the tree search, respectively.
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Figure 1: The jigsaw reassembly problem

2 Literature Review

In the domain of reassembly of images altered by fragmentation and permutation, the current
landscape predominantly manifests a convergence between CNN methodologies and Reinforcement
Learning (RL) paradigms. Pioneering strides have been made by Le et al. [3] and Paumard et al. [5],
wherein the utilization of ConvNets has been instrumental in accurately discerning and repositioning
image fragments, thereby effectuating image reassembly.

However, with the development of deep reinforcement learning, leveraging the seminal work of Sutton
et al. [10], we have seen the application of reinforcement learning to countless tasks, particularly
games.

Recent advancements have witnessed the assimilation of the AlphaZero algorithm [7] into the
reassembly framework, as elucidated by Gras [2]. On the other hand, Song et al. [9] utilize Deep
Q-Networks instead, another recent development in the field of reinforcement learning. These
studies underscore the burgeoning interest in employing RL-based methodologies for the precise
reconstruction of fragmented images.

In this vein, our current work draws significant inspiration from the foundational contributions of
Sutton et al. [10] and Silver et al. [7], while also building upon the advancements put forth by [2].
Our baseline implementation is crafted by integrating key insights from these seminal works, striving
to harness the collective potential of RL and CNNs for optimal image reassembly in fragmented and
permuted scenarios.

3 Model Description and Baseline Selection

In this paper, we assume that an image is divided into an m × m grid of same-sized fragments.
Letting I denote the image, we use fi to denote the ith fragment of the image, and we use Ir(t) to
denote the current state of the reconstructed image. We assume that at t = 0, Ir(t = 0) is a blank
(zero-valued) image and that the fragments of the image are shuffled using a permutation function P .
In each round, an action at = (fi, j) can be taken. The action at = (fi, j) means placing fragment fi
at jth position. When the fragment fi is placed at jth position, the jth position of the reconstructed
image Ir(t) is updated with this fragment. The final goal of this model is to reconstruct the original
image this way such that Ir(m2) = I , or equivalently to find the inverse permutation function P−1 to
reshuffle the fragments back to its original position. An example shuffled image and its reconstruction
is given in Fig. 1

We can measure the performance of any model performing this image reassembly task by simply
assessing the percentage of images that are reassembled completely correctly.

We have identified two baselines for this project. The first baseline [1] utilizes a convolutional neural
network architecture that represents the general approach that has been dominantly used for this task,
and the second baseline we have identified [2] uses reinforcement learning in its implementation that
represents the recent advancements in this field. While convolutional networks can solve the problem
for 2× 2 or 3× 3, exponential size of possible rearrangements necessitates the use of reinforcement
learning for larger grid sizes.
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Figure 2: The model overview of the baseline 1

3.1 The Baseline Model 1

The first baseline model is a dual objective system that adds jigsaw puzzle solving as a secondary
objective to improve accuracy on an image classification task. In this model, the original image and a
shuffled image are fed as input, and the network aims to classify the image using the original image,
and tries to reassemble the original image from the shuffled image. The overview of this network is
given in Fig. 2. The loss function is defined as the linear combination of the cross-entropy losses of
both objectives.

For training, the model uses a pre-trained convolutional network such as ResNet or AlexNet, removes
the last fully connected layer, and substitutes it with the new object and classification layers.

3.2 The Baseline Model 2

This baseline model uses a model-based reinforcement learning technique with Monte Carlo Tree
Search to search to estimate the value of the reassembly states and find the optimal trajectory that
correctly reassembles the image. The overview of the architecture of this baseline is given in Fig. 3.

To guide our reinforcement learning model to the optimal solution, we use a reward function rt which
gives a reward of 1

m2 is the fragment is placed in its correct position, and zero otherwise. This can be
written as:

r(t)

{
1

m2 , if at ∈ A∗

0, if at /∈ A∗ (1)

where A∗ = {(f1, P−1(1)), (f2, P
−1(2)), · · · , (fm2 , P−1(m2))} is the set of optimal actions (ac-

tions that place the fragment in its correct position). The final reward of the reconstruction is the total
number of correctly identified pieces which can be written as R =

∑m2

t=1 r(t).

The baseline model consists of two networks; the Policy Network (PN) and the Value Network (VN).
The policy network takes the current state of the assembled puzzle, and a fragment as input, and
computes the move probability for the fragment for each of the remaining spaces. The current state of
the assembled puzzle consists of fragments that are already placed into the puzzle, and blank image
for the places that don’t have a fragment placed on it. This current state of the assembled puzzle is
fed into the Feature Extraction Network 1 which consists of convolutional layers, and a remaining
fragment is fed into the Feature Extraction Network 2 which also consists of convolutional layers
to extract features in these images. Then, the Combination Layer which consists of a bilinear layer
is used to capture the spacial covariances among the features of both images. The output of this
network is flattened and a softmax activation is used to get the move probabilities of the fragment to
any empty space in the current puzzle.

Let θ denote the parameters of our PN. Let ρ denote the performance (the expected reward) of the
given policy. Let α correspond to the learning rate. We update the parameters of the policy network
using the policy gradient approach.
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Figure 3: The model overview of baseline 2

Figure 4: The policy network

Figure 5: The value network

∆θ ≈ α
∂ρ

∂θ
(2)

The architecture of the PN is given in Fig. 4.

The VN is simply a convolutional network that takes the final reassembled image Ir(m
2) as input

and outputs a scalar score that tells how similar reconstructed image is to the original image. The
architecture of the VN is given in Fig. 5.

In this framework, first MCTS randomly simulates different paths of actions and uses the PN to
estimate the value of these different paths, and the optimal action is estimated from these paths. Then,
this optimal action is applied, and the same process starts again until assigning every fragment to
a position. Also, after each simulation the final state value estimated by the VN is backpropagated.
This lets the algorithm reassemble the puzzles without having the ground truth after the training
phase.

4 Baseline Implementation

We implemented the Baseline model 1 with the following training parameters:

• Dataset: PACS
• Batch size: 128
• Pretrained network: resnet18
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• Image Augmentations: color jitter, random horizontal flip, random grayscale

• Learning rate: 0.001

After training the network with these parameters, the accuracy we obtained is 82.14%.

5 FINAL(edit name) Baseline Implementation

Here introduce general model architecture

5.1 Policy Network

Figure 6: Convolutional Neural Network

Architecture Ablation Summary

Model Hidden Layers Parameters

1layerCNN_1Dense 1 × {CNN, Maxpooling, Batchnorm}, 1 Dense Kernel Size (3)
2layerCNN_1Dense 2 × {CNN, Maxpooling, Batchnorm}, 1 Dense Kernel Size (3,5)
3layerCNN_1Dense 3 × {CNN, Maxpooling, Batchnorm}, 1 Dense Kernel Size (3,5,9)
1layerCNN_2Dense 1 × {CNN, Maxpooling, Batchnorm}, 2 Dense Kernel Size (3)
2layerCNN_2Dense 2 × {CNN, Maxpooling, Batchnorm}, 2 Dense Kernel Size (3,5)
3layerCNN_2Dense 3 × {CNN, Maxpooling, Batchnorm}, 2 Dense Kernel Size (3,5,9)

Table 1: Policy Network Architecture Ablations

The highest performing model architecture was the 3layerCNN with 2 Dense layers.

5.2 Value Network

Figure 7: Resnet Architecture

Architecture Ablation Summary

The highest performing model architecture was the 1Resnet18_2Dense.
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Model Hidden Layers Parameters

3layerCNN_2Dense 3 × {CNN, Maxpooling, Batchnorm}, 2 Dense Kernel Size (3,5,9)
1Resnet18_2Dense 3 × {Resnet18, 2 Linear, Softmax} Resnet

Table 2: Value Network Architecture Ablations

5.3 Monte Carlo Tree Search

6 Training

6.1 Loss Function

7 Proposed Extensions

The team has identified several clear ideas for extending the baseline into the final project. Within the
domain of JigSaw Reassembly, our research aims to harness the power of reinforcement learning
for the sequential reassembly of images from disordered fragments. Building upon the work of Gras
[2], who introduced a rewarding mechanism assigning 1/n for correctly placed pieces, our team has
identified pivotal areas for further enhancement in this paradigm.

Our critical examination revealed certain constraints within the prescribed reward structure, which
overly supervised the RL agent’s learning process. Additionally, the lack of incentivization for the
reconstruction of semantically equivalent images hindered the effectiveness of the reward function.
To surmount these limitations, our team is actively developing a novel reward scheme that evaluates
the semantic similarity between the original and reassembled images.

Another limitation we encountered was the mismatch between reinforcement learning and the non-
sequential nature of the game proposed in Gras [2]. In response, we are proposing a substantial
paradigm shift by modifying the fundamental gameplay to better align with RL’s sequential learning
strengths. Our approach involves adapting the RL agent to engage in an image reassembly game
allowing the swapping of any puzzle piece with its adjacent counterpart. This revised gameplay
facilitates a sequence of permissible moves for image reconstruction, aiming to minimize the RL
agent’s steps and achieve mathematical optimality in reassembly.

The objective is to enable the RL agent to learn and execute optimal strategies in reconstructing
fragmented images, thereby contributing to enhanced generalizability and efficiency in this domain.
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